圓型限制性三體問題
[拼音]:yuanxing xianzhixing santi wenti
[外文]:circular restricted three-body problem
研究一個無限小質(zhì)量體在兩個有限質(zhì)量體(圍繞公共質(zhì)點作圓周運動)的萬有引力作用下運動的規(guī)律問題。在航天活動中,可以把航天器看作一個無限小質(zhì)量體。航天器在地球-月球引力作用下,或者在太陽-地球引力作用下,或者在太陽-某大行星引力作用下的運動問題,都可以近似看地成圓型限制性三體問題。
能量積分
在研究圓型限制性三體問題時采用一個與兩個有限體一起運動的旋轉(zhuǎn)坐標系。坐標原點在公共質(zhì)心上,圖中標出了X、Y軸的方向,P1、P2為兩個有限質(zhì)量體,X–Y平面是兩個有限質(zhì)量體運動的平面。Z 軸與X、Y軸垂直。在這個參考坐標系中,無限小質(zhì)量體的運動速度與位置有下面的關(guān)系:
式中v為無限小質(zhì)點在旋轉(zhuǎn)坐標系中的速度;x、y、r1、r2分別為小質(zhì)點的位置坐標和到P1、P2的距離;G為萬有引力常數(shù);m1、m2分別為P1和P2的質(zhì)量;C為積分常數(shù),它依賴于無限小質(zhì)點初始位置和初始速度。這個公式是圓型限制性三體問題的能量積分,常稱為雅可比積分。僅有這個關(guān)系式還不能描述小質(zhì)量體的運動。迄今為止圓型限制性三體問題還沒有解出。無限小質(zhì)量體的實際運動只能用數(shù)值計算方法求解。 航天器在地球-月球引力作用下的運動,用能量積分不僅能夠給出航天器的位置與速度的關(guān)系,并且從中可以引出零速度面和平動點兩個有用的概念。
零速度面
在能量積分的公式中,當V等于0時,公式描述了一個空間曲面,稱為零速度面。它是航天器所能夠達到的范圍與不能達到的范圍的分界面。零速度面與航天器的初始位置和初始速度有關(guān)。在初始位置一定的情況下,初始速度增加,航天器所能達到的范圍增大,不可到達的范圍縮小。圖中P1和P2分別代表地球和月球,陰影部分表示航天器不能到達的區(qū)域,圖中a~f表示隨著初始速度增加不能到達的范圍縮小的過程。在a中,兩個卵形區(qū)域互不連通,這表明在這樣的初始速度下航天器不可能到達月球。在b中兩個卵形區(qū)域相切于L1點,與它對應(yīng)的速度是從地球發(fā)射航天器可能到達月球的最小速度。在c中兩個卵形區(qū)相通,從地球發(fā)射的航天器可能從裂開的窗口飛往月球。在d中零速度面相切于L2點,航天器不能逃逸出地-月系統(tǒng)。有e中零速度面再次相切于L3點。在f中零速度面收縮到L4、L5兩點。距地面 200公里處的航天器在初速為10.848公里/秒時,就會出現(xiàn)b的情況,這是飛向月球的最小速度。d 所對應(yīng)的初速為 10.849公里/秒,要想脫離地-月系統(tǒng),航天器的初速不得小于這個數(shù)值。e和f所對應(yīng)的初速分別為10.857公里/秒和10.858公里/秒,在這幾種情況下的初速相差很小。
平動點
是指零速度面隨初始速度而變化的過程中新出現(xiàn)的零速度面的三個切點(圖中的 L1、L2、L3)和兩個消失點(圖中的L4、L5)。其中L1、L2和L3處在地-月連線上。L4(或L5)與地球和月球是等邊三角形的三個頂點。平動點是航天器運動的特解。在旋轉(zhuǎn)坐標系中如果在平動點上有初速為零的航天器,則航天器的速度將始終為零,也就是說,它在旋轉(zhuǎn)坐標系中是不動的航天器。實際上航天器是圍繞地球作圓周運動,它的運動角速率和月球的相同。在平動點周圍運動的航天器具有特殊的作用。(見暈軌道)。
建筑資質(zhì)代辦咨詢熱線:13198516101
標簽:圓型限制性三體問題
版權(quán)聲明:本文采用知識共享 署名4.0國際許可協(xié)議 [BY-NC-SA] 進行授權(quán)
文章名稱:《圓型限制性三體問題》
文章鏈接:http://www.fjemb.com/14610.html
該作品系作者結(jié)合建筑標準規(guī)范、政府官網(wǎng)及互聯(lián)網(wǎng)相關(guān)知識整合。如若侵權(quán)請通過投訴通道提交信息,我們將按照規(guī)定及時處理。